咨询热线

13952152135

网站公告 封闭煤场监测,皮带明火煤监测,筒仓安全监测,筒仓惰化保护,筒仓保护,圆形煤场监测,除尘器惰化,筒仓氮气,封闭储煤场,煤场测温,防爆门,条形煤场,煤自燃,储煤安全,空气炮
联系我们

13952152135

徐州赛森电子自动化技术有限公司
联系人: 黄经理
电    话:0516-83797157 / 61669157

手    机:13952152135    15105212136
传    真:0516-83797157
E-mail: xzssdz@163.com

地    址:徐州市铜山高新区

查看更多

煤场监测>>当前位置:首页 - 技术支持 - 煤场监测

露天煤场煤堆防自燃煤仓温度自动监测监控报警系统<二>

时间:2016-10-12    点击量:250

更多:

四、通过有效手段了解整个煤堆内部温度情况

那么怎样才能有效执行烧热存冷制度呢?必须通过有效手段了解整个煤堆内部温度情况。

目前市场上检测煤堆自燃的产品的局限性

人工巡检是现场通行的作法,但是靠一两个工人扛2米的温度计巡逻根本达不到有效测量密度,热电阻插入煤堆需要几分钟才可以测量准确,而且煤场很多地方行走不便,煤场环境恶劣,有斗轮机等大型设备作业,安排太多的人测温也非常不安全;

还有电厂使用红外温枪或热成像设备,该类设备都只能测量表面温度,煤堆自热自燃主要从内部开始,所以达不到使用目的,导致选型失败。所以现场明知预防自热自燃的重要性,却无可奈何。

 

1、测点位置及深度选择方法

受到供氧量和散热条件的制约,煤堆自燃的发源点主要发生在煤堆侧表面以内1米到4米深度范围内。如图(煤堆竖剖面)所示,首先观察从煤堆斜面至以内1米深度范围(即黑色实线至红色虚线之间的区域),因为紧邻空气,煤的散热量大于发热量,所以煤自热初期所发出的热量,不能得到有效积累,不能导致温度明显升高,所以这个区域的煤很难自燃;观察从煤堆斜面以内4米深度至煤堆中心的范围(即黄色虚线至蓝色虚线之间的区域),因为氧气供应量太少,无法为煤发热提供足够的氧气,所以很难自燃;观察煤堆上表面(即灰色实线),因为通风量远远小于煤堆斜面,所以相对于煤堆斜面,它很不易发生自热自燃;观察煤堆下表面(即绿色实线),因为紧贴地面,供氧量不足,而难发生自燃;最后,观察从煤堆斜面以内1米深度至煤堆斜面以内4米深度范围(即红色虚线至黄色虚线之间的区域),这个区域的供氧量满足煤发热自燃的需要,并且散热量不足以把煤发出的热量及时发散到空气中,热量不断积累,煤温不断加速升高,最终导致严重的自燃,在该区域自燃后,大量的热量不断向煤堆中心和煤堆表面传递(即向蓝色虚线和黑色实线方向),最终形成我们从煤堆外面看到的冒汽冒烟等现象。所以,当我们观察到煤堆表面某处冒汽冒烟时,并不是表皮首先发热自燃,而是表面以内1米至4米区域经过一段时间的自燃,最终把热量传递出来,形成的结果。所以观察表面发热自燃只是治标,观察表面以内1米至4米区域发热自燃才是治本。

综合考虑温度监测的有效性和实用性,我们往往选择表面以内2米深度的区域作为监测区域。

 

2、测点高度的选择

例如200米长度*50米宽度的条形煤堆,在150米长度处的煤堆左侧斜面,斜面高度15米,那么观察从0米到15米高度的这块长条区域,该区域具有基本相同的供养氧件和散热条件,所以更容易具有相似的煤的发热情况,所以测量其中一点往往具有较强的代表性。考虑到无线测温探头在实际操作中的便捷性,和吹风方向通常由煤堆斜面的底部沿着煤堆斜面向上(导致煤堆斜面靠近底部的位置供氧量比较大),我们往往选择从距离地面向上2米的高度,把探头垂直插入煤堆斜面,插入深度在1米到4米之间。

 

3、测点位置的选择

   测点越密集,发现煤的发热现象就越早,但是测量设备的购置和维护成本就越高;反之,测点太稀疏,等到发现自燃现象就太晚了,自燃感染的区域就太大了。综合考虑,既不能让自燃的感染区域太大,也不能使设备的购置和维护成本太高,我们往往选择沿着煤堆斜面,间隔20米的距离,布置一支测温探头。

   考虑到很多煤场的储煤有不同的来源、批次、煤质等差异,所以也可以采用每个批次插入至少一支探头的策略,该测点就能比较好的反应该批次储煤的发热自燃情况。

4、特殊情况下的布置方法

   每个煤场都具有地理、气候、形状、土建结构方面的个性,所以煤场负责人经过长期管理实践,也会发现该煤场特有的发热自燃现象,可以根据这些现象有针对性的布置测温点。

五、合理全面的温度监控烧热存冷降煤耗

已经实施数字煤场管理的电厂,可以把煤温数据导入到数字煤场软件中,当燃料专工使用数字煤场的配煤功能时,软件除了提示煤质指标外,还会提示煤温指标,燃料专工可以参考该煤温指标,选择合理配煤方案,降低煤耗。

没有实施数字煤场的电厂,可以直接使用联网版本的煤温监测软件观看煤堆温度,合理选择优先上煤方案。

总之,当燃料专工可以获得煤温参数后,他就可以优先使用烧热存冷的原则去优化配煤方案,而不是仅仅靠烧旧存新的老方法。

1、及时发现自燃点,减少损失

当某个测点温度达到50度的时候,软件会发出高等级的报警,现场必须及时行动,根据测点位置描述,在测点附近寻找自燃点,及时把自燃的煤堆翻开、冷却、再压实,再把测温探头插入,继续监测煤温。

如果不及时处理,煤温超过50度后进入快速氧化通道,会很快升温自燃,会感染更大区域的煤堆,造成巨大损失,并且由于感染区域过大而无法有效处理。

2、经济效益分析

电厂比较常见的储煤堆大约是200*50*10米,我们以1个这样大小的煤堆计算其自燃损耗。因为煤堆压实的效果,初期发热层主要集中在煤堆表面以下的1米至4米深度范围内,发热层以外的存煤发热量比较小,暂时不计算在内,只计算发热层内的损耗。据现场测温经验和与多个电厂输煤专工的调研,我们知道,在储煤7天后,该发热层有30%的煤达到或超过36度,70%的煤达到32度;在储煤20天后,发热层扩大至0.5米至5米深度范围,其中有30%达到或超过46度,有70%达到36度;在储煤一个月后,发热层扩大至表面至超过6米的深度范围,有30%的煤温度接近或达到50度,70%达到46度。大多数电厂都是在发现煤温接近或者超过50度的时候才采取降温措施,而且很多时候,管理员根本不能发现那些温度已经超过50度的热点区域,直到看到煤堆开始冒烟气或者水汽的时候才采取降温措施,所以以上数据完全符合目前燃料管理工作的现状,根据以上数据计算得以下自燃损耗表:

储存周期(天)

周期内热值下降的百分比(%

1200*50*10米的煤堆的周期自燃煤耗(约15万吨)(单位吨)

周期损耗金额(按照700元一吨计算)(万元)

该煤堆年自燃损耗(万元)

7

0.0685

102.75

7.19

375.04

20

0.4603

690.47

48.33

882.08

30

1.1479

1721.79

120.53

1466.39

  以上数值只计算了自热层的自燃损耗,自热层以外还有部分损耗难以统计,没有计算在内,这样,我们很容易理解,当存煤周期达到1个月时,电厂很难达到入厂煤和入炉煤的热值差的考核指标,因为考核指标是1.7%,仅仅计算发热层的自燃损耗就高达1.15%,再加上发热层以外的自热损耗、风化、雨淋、采制化误差等,热值差很容易超标。

  经过以上科学严谨的分析,我们看到减小自热自燃损耗是关系到降低上千万元成本,和创造上千万元利润的大事。

3、应用案例

华电安徽某100万千瓦的电厂于2012112号安装并运行了煤堆温度监测系统,如图所示,按照20米间隔(或其它测点布置图)把无线测温探头插入煤堆,输煤办公室集中监测所有测点的温度,当某点温度达到50度时,软件报警,输煤专工采取翻开和压实的方法及时清除自燃点,避免它扩大面积。经过实际运行,该系统达到了尽早发现自燃点的目的,现场及时清除自燃点,阻值自燃面积扩大,减轻了自燃损耗和环境污染。而且,使用单位利用该系统改进了输煤作业流程,把过去的烧旧存新原则发展成为烧热存冷原则,大大提高了煤场管理的科学性,提高经济效益,减少有害气体排放。

测点位置

华电安徽某电厂4号条形煤场,煤堆斜面内部2米深度

煤种

印尼进口褐煤

传感器编号

19

日期

时间

测点温度(摄氏度)

2013/1/19

0:00

21.59

2013/1/19

1:00

21.7

2013/1/19

2:00

21.8

2013/1/19

3:00

21.95

2013/1/19

4:00

22.08

2013/1/19

5:00

22.14

2013/1/19

6:00

22.27

2013/1/19

7:00

22.39

2013/1/19

8:00

22.55

2013/1/19

9:00

22.85

2013/1/19

10:00

23.04

2013/1/19

11:00

23.26

2013/1/19

12:00

23.68

2013/1/19

13:00

24.29

2013/1/19

14:00

24.87

2013/1/19

15:00

25.78

2013/1/19

16:00

26.84

2013/1/19

17:00

28.13

2013/1/19

18:00

29.67

2013/1/19

19:00

32.08

2013/1/19

20:00

36.35

2013/1/19

21:00

42.06

2013/1/19

22:00

46.04

2013/1/19

23:00

50.35

2013/1/20

0:00

55.5(此时采取了翻开冷却措施)

2013/1/20

1:00

43.81

 

该表格记录了煤温监测系统如何跟踪测点温度变化,发现自燃热点,并及时报警,消除热点的过程。现场工作人员于20日凌晨零点钟左右发现软件报警,现场查看测点位置,在探头附近发现了自燃点,并对自燃点采用翻开冷却措施,消除了自燃事故扩大的隐患!如果没有该煤温监测系统,现场操作工几乎不可能在凌晨到煤堆上测温,也就不可能及时发现这个自燃隐患,该自燃点肯定会不断扩大自燃范围,造成较大的煤耗损失。仅仅1月份煤温监测系统就帮助该电厂消除超过10起自燃隐患。

该案例还充分说明,自燃的发生具有很强的不可预测性,即使在冬天的凌晨,环境温度不足10摄氏度的条件下还是会发生自燃现象。而且,很多时候自燃的演变速度超过想象,一旦某个热点发生自燃,会很快的向周边区域蔓延,使得周边区域迅速升温。这个案例中,测点区域的煤温只用了24个小时就从21度上升到55度。

 

网站首页 关于我们 新闻中心 产品中心 技术支持 工程案例 企业荣誉 人才招聘 留言反馈 联系我们
地址:徐州市铜山经济技术开发区  电话:13952152135  传真:0516-83797157 邮箱:xzssdz@163.com
版权所有:徐州赛森电子自动化技术有限公司  技术支持:徐州网站制作公司  ICP备案编号: